열벡터공간
5강 - 벡터공간과 열벡터공간
5강 - 벡터공간과 열벡터공간 5.1 Vector Space ‘공간’이란 덧셈과 상수배 연산에 대하여 닫혀있는 집합벡터공간 V내에 존재하는 임의의 n차원 벡터 x,y와 임의의 상수 c에 대하여 x+y , cx , c1x+c2y 등은 모두 V의 원소이다f(x) = ax2+bx+c 등의 꼴도 3차원 벡터 [a,b,c] 로 나타낼 수 있으므로 벡터공간으로 표현 가능하다f(x) = aex 등의 꼴도 테일러 급수로 표현하면 x에 대한 다항식으로 근사 가능하므로, 벡터공간으로 근사 가능하다. 단, 무한차원의 벡터이므로 이에 한하여 힐버트 공간이라 한다 5.2 벡터 연산의 특징 x+y = y+xx+(y+z) = (x+y)+z영벡터는 벡터의 덧셈에 대한 항등원이다모든 벡터공간은 원점(영벡터)을 필수 원소로 가진다벡터 ..